Модели и методы вычислительной гидродинамики

Модуль 1. Введение

Урок 1. Автоматизация инженерных расчетов

Инженерные расчеты

Мудрость ракетчиков:

«То что нельзя рассчитать — нельзя построить»

Инженерные расчеты

• Необходимы при разработке

• Следствие и неотъемлемая часть технического прогресса

Технический прогресс

ЖЕЛАНИЕ: максимум передвижения в комфорте, минимум физических усилий

РЕЗУЛЬТАТ: изобретение автомобиля

Этапы разработки изделий

- Концептуальное проектирование
- Рабочее проектирование
- Технологическая проработка
- Изготовление и испытание (доработка)

Концептуальное проектирование

- Задачи нового изделия
- Способы решения
- Сопутствующие требования
- ОБЩИЕ ИНЖЕНЕРНЫЕ РАСЧЕТЫ

Техническое задание

Рабочее проектирование

- Реализация ТЗ
- ИНЖЕНЕРНЫЕ РАСЧЕТЫ
- Конструктивные особенности
- Чертежи и материалы

Рабочая конструкторская документация

Технологическая проработка

- Процесс изготовления деталей
- Последовательность и технология сборки изделия

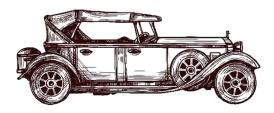
Технологическая карта изделия

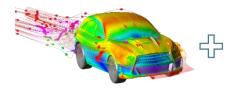
Испытания опытного образца

- Функциональные требования
- Надежность
- Отказоустойчивость
- Безопасность

Акт приемочных испытаний, доработка

В докомпьютерную эпоху


Этапы разработки	Инструменты
Концептуальное проектирование	бумага, карандаш, глина, логарифмическая линейка
Рабочее проектирование	кульман, бумага, карандаш, логарифмическая линейка
Технологическая проработка	кульман, бумага, карандаш
Изготовление и испытание	опытный образец, полигон



Современные инструменты

Этапы разработки	Инструменты
Концептуальное проектирование	CAD, CAE
Рабочее проектирование	CAD, CAE
Технологическая проработка	CAM
Изготовление и испытание	опытный образец, полигон

Автоматизация проектирования

• БЫЛО: бумага, карандаш, глина, кульман, логарифмическая линейка

• CTAЛO: CAD, CAE, CAM

САПР

СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ

САПР

CAD

computer-aided design, автоматизация конструирования

CAE

computer-aided engineering, автоматизация инженерных расчетов

CAM

computer-aided manufacturing, автоматизация изготовления

CAE

СИСТЕМЫ АВТОМАТИЗАЦИИ ИНЖЕНЕРНЫХ РАСЧЕТОВ

CAE

FEA

finite element analysis, прочностной анализ

CFD

computational fluid dynamics, вычислительная гидродинамика

MBD

multibody dynamics, многотельная динамика

Для чего нужны САЕ системы?

- Минимизация ошибок проектирования
- Сокращение количества испытаний
- Проведение и опасных или дорогостоящих испытаний

Минимизация ошибок

Этап	Цена исправления
Концептуальное проектирование	100 p
Рабочее проектирование	x 10 (1000 p)
Технологическая проработка	x 100
Изготовление и испытание	x 1000
Серийное производство и эксплуатация	x 10 000 - x 100 000

Сокращение числа испытаний

Исключить этап испытаний нельзя

- Модель учитывает не все физические эффекты, влияющие на результат
- Высокая цена исправления ошибок на этапах ввода в эксплуатацию
- Требование нормативных документов

Опасные и дорогостоящие испытания

Нештатные ситуации

Аварийные ситуации

Экзотические дорогостоящие испытания

На уроке мы узнали

Использование САПР обеспечивает экономию ресурсов в процессе разработки новых изделий

На следующем уроке

CFD в инженерных расчетах