Skip to main content


Доступные курсы категории «Программирование и информационные технологии»
Course image" Техническая поддержка программного комплекса проведения испытаний на виртуальном полигоне
Course image
Course summary text:

В результате обучения у слушателей формируются и совершенствуются следующие компетенции:

- ПК-1 (компетенция в соответствии с профессиональными стандартами: 06.011 «Администратор баз данных», 06.024 «Специалист по технической поддержке информационно-коммуникационных систем») - способен обеспечить функционирования баз данных;

- ПК-2 (компетенция в соответствии с профессиональными стандартами: 06.011 «Администратор баз данных», 06.024 «Специалист по технической поддержке информационно-коммуникационных систем») - способен оказать консультационно-техническую поддержку клиентов по вопросам технического обслуживания и обеспечения работоспособности инфокоммуникационных систем и (или) их составляющих;

- ОПК-5 (компетенции в соответствии с направлением подготовки 09.03.01 «Информатика и вычислительная техника» - способен инсталлировать и сопровождать программное обеспечение для информационных систем и баз данных.

Программа предназначена для специалистов в области баз данных и технической поддержки информационно-коммуникационных систем, имеющих высшее или среднее профессиональное образование, а также лиц, получающих высшее или среднее профессиональное образование.

Обязательным требованием к слушателям программы является наличие навыка работы с операционной системой Astra Linux.

Общая продолжительность по программе – 16 академических часов.

 


Программирование и информационные технологии
Course image" Специалист по управлению цифровым продуктом
Course image
Course summary text:

Целью реализации программы является совершенствование компетенций слушателей в области управления цифровыми продуктами

В результате освоения программы слушатель должен:

знать:

●          современные концепции использования API в разработке внутренних и публичных продуктов

●          применимость OpenAPI в современной продуктовой разработке

●          ключевые метрики интерфейсов API

●          основы архитектуры высоконагруженных систем

●          Знание форматов данных: JSON, YAML и XML, а также их отличий

●          категоризировать методы ml и определять ситуации из эффективного использования

●          формулировать задачи для ml-исследователей

●          определять базовые методы ml для своих продуктов

●          извлекать и анализировать инсайты из данных с использованием инструментария машинного обучения

●          выбирать инструменты для построения моделей машинного обучения

●          понимать концепции децентрализации, распределенного реестра, инструментов блокчейн, смарт-контрактов

●          как работают смарт-контракты и может описать примеры их использования

●          основные признаки и принципов работы криптовалют

●          несколько видов криптокошельков и выделить основные признаки криптокошелька

●          основные виды криптобирж, понимает приницпы их работы и может назвать несолько примеров

●          что такое невзаимозаменяемые токены

●          как создаются и развиваются крипто стартапы

уметь:

●        разрабатывать документацию по API с использованием Swagger

●        отправлять HTTP-запросов с Postman/Insomnia

●        навыком анализа предметной области и необходимости/применимости методов ML для создания продуктов в этой ПО

●        базовыми навыками работы с данными при помощи методов ML

●        сценариями использования концепций блокчейна

●        описать пример использования смарт-контракта

●        перечислить основные этапы развития фандрайзинга в криптосфере и указать, что менялось от этапа к этапу

●        перечислить основные категории/понятия концепции web 3.0 и применить их для решения рабочего кейса

Программа предназначена для специалистов в области информационно-коммуникационных технологий, имеющих высшее образование; студентов вузов.

Программа предусматривает изучение следующих тем:

●                   Концепция API в разработке IT продуктов

●                   Машинное обучение в задачах продуктовой разработки

●                   Блокчейн как инструмент повышения доверия в продуктовой разработке

●                   Решение индустриальных задач

Форма проведения итоговой аттестации: зачет.

Программирование и информационные технологии
Course image" Специалист по Data Science
Course image
Course summary text:
Программирование и информационные технологии
Course image" Инженер умных систем
Course image
Course summary text:
Программирование и информационные технологии
Course image" Машинное обучение в задачах радиолокации
Course image
Course summary text:

Программа разработана с учетом требований ФГОС ВО по направлению подготовки 09.03.01 «Информатика и вычислительная техника».
Целью реализации программы является совершенствование базовых математических и аналитических знаний обучающихся для решения задач машинного обучения.
Обучающиеся должны овладеть следующими компетенциями:

  • ОПК-8 - способен разрабатывать алгоритмы и программы, пригодные для практического применения;
  • ОПК-9 - способен осваивать методики использования программных средств для решения практических задач;
  • ПК-1 - способен анализировать большие данные с использованием существующей в организации методологической и технологической инфраструктуры.

В результате освоения программы обучающийся должен:

  • знать:
    • основные подходы к работе с базами данных, операционными системами и оболочками, современные программные среды разработки информационных систем и технологий; алгоритмы поиска закономерностей и корреляций в больших наборах данных; основные типы задач, процесс обучения и валидации модели, методы обработки и кластеризации данных, ансамблирования решений;
    • современные информационно-коммуникационные и интеллектуальные технологии, инструментальные среды, программно-технические платформы для решения профессиональных задач; алгоритмы машинного обучения, которые могут применяться в задачах радиолокации;
    • предметную область анализа больших данных в соответствии с требованиями заказчика, возможности, имеющейся у исполнителя методологической и технологической инфраструктуры анализа больших данных; современный опыт использования анализа больших данных; теоретическую и прикладную информатику; теоретические и прикладные основы анализа данных; основы бизнес-интеллекта, типы систем бизнес-интеллекта; теорию принятия решений, математическое моделирование, теорию вероятностей и математическую статистику; типы анализа больших данных, виды аналитики; современные методы и инструментальные средства анализа больших данных; стандарты проведения анализа данных; методы оценки временных и стоимостных характеристик технологий больших данных; источники информации, необходимой для обеспечения деятельности в предметной области заказчика исследования; современную технологическую инфраструктуру высокопроизво-дительных и распределенных вычислений; методы интерпретации и визуализации больших данных.
  • уметь:
    • применять языки программирования и работы с базами данных, современные среды разработки информационных систем и технологий для автоматизации различных процессов, решения прикладных задача различных классов, ведения баз данных и информационных хранилищ, работать с базовыми инструментами машинного обучения, категориальными признаками и тестами, текстовыми данными и способами их представления; принимать оптимальные решения и создавать прогнозы на основе анализа закономерностей и корреляций в больших наборах данных;
    • обосновывать выбор современных информационно-коммуникационных и интеллектуальных технологий; пользоваться различными средами для быстрого применения алгоритмов машинного обучения; работать с разнотипными данными, визуализировать их, оценивать простые метрики качества работы алгоритмов классификации и восстановления регрессии; осуществлять поиск по документации специализированных библиотек машинного обучения, пользоваться открытыми базами статей по тематике машинного обучения в задачах радиолокации;
    • использовать имеющуюся у исполнителя методологическую и технологическую инфраструктуру анализа больших данных для выполнения аналитических работ; проводить сравнительный анализ методов и инструментальных средств анализа больших данных; разрабатывать и оценивать модели больших данных; программировать на языках высокого уровня, ориентированных на работу с большими данными; адаптировать и развертывать модели в предметной среде; решать задачи классификации, кластеризации, регрессии, прогнозирования, снижения размерности и ранжирования данных; решать проблемы переобучения и недообучения алгоритма; формировать предложения по использованию результатов анализа; оформлять результаты аналитического исследования для представления заказчику; разъяснять заказчику результаты аналитической работы.

Программа предназначена для специалистов в области информационно-коммуникационных технологий, имеющих высшее или среднее профессиональное образование, а также лиц, получающих высшее образование.

Программа предусматривает изучение следующих тем:

  • практическая работа с базовыми инструментами машинного обучения;
  • методы обработки данных. Метод KNN;
  • метрики и линейные модели;
  • логическая регрессия и ее приложения. Кросс валидация;
  • методы обработки текстовых данных для задач машинного обучения;
  • решающие деревья и их приложения;
  • ансамбли решений и их приложения;
  • кластеризация в задачах радиолокации.

Форма проведения итоговой аттестации: выполнение итогового теста.

Программирование и информационные технологии
Course image" Глубокое обучение в NLP
Course image
Course summary text:
Программирование и информационные технологии
Course image" DevOps-специалист
Course image
Course summary text:
Программирование и информационные технологии
Course image" Разработчик Golang
Course image
Course summary text:
Программирование и информационные технологии
Course image" Java-разработчик
Course image
Course summary text:
Программирование и информационные технологии
Course image" Анализ данных
Course image
Course summary text:
Программирование и информационные технологии
Accessibility

Background Colour

Font Face

Font Size

1

Text Colour